
Running Time Complexity of

Printing an Acyclic Automaton

Franck Guingne1,2, André Kempe1, Florent Nicart1,2

1 Xerox Research Centre Europe – Grenoble Laboratory
6 chemin de Maupertuis – 38240 Meylan – France

Firstname.Lastname@xrce.xerox.com – http://www.xrce.xerox.com

2 Laboratoire d’Informatique Fondamentale et Appliquée de Rouen
Faculté des Sciences et des Techniques – Université de Rouen

76821 Mont-Saint-Aignan – France
firstname.lastname@dir.univ-rouen.fr – http://www.univ-rouen.fr/LIFAR/

Abstract. This article estimates the worst-case running time complex-
ity for traversing and printing all successful paths of a normalized trim
acyclic automaton. First, we show that the worst-case structure is a fes-
toon with distribution of arcs on states as uniform as possible. Then, we
prove that the complexity is maximum when we have a distribution of e

(Napier constant) outgoing arcs per state on average, and that it can be
exponential in the number of arcs.

1 Introduction

This article takes place in the scope of the study of complexity of automata al-
gorithms (Yu, Zhuang, and Salomaa, 1994), and particularly in the study of the
worst-case complexity (Nicaud, 2000). We estimate the worst-case running time
complexity for traversing and printing all successful paths of a finite-state au-
tomaton. The number of states and arcs are given, and the structure is unknown.
This task occurs, e.g., when all words of a natural-language lexicon represented
through an automaton are printed into a file.

By “printing a path” we mean that the label of the path is written out when
its final state is reached. Hence, the complexity of this part of the task depends
on both the number and the length of all paths. The required traversal of paths
has in general a much lower complexity because prefixes shared by several paths
are traversed only once, so that many paths are not traversed in full length

We start from the worst-case structure and show that any other structure
decreases the complexity of the task. We restrict our analysis to acyclic automata
with a single initial state and a single final state.

The article is structured as follows: Section 2.1 recalls some basic notions
concerning automata and lists the assumptions made for all following estima-
tions. Section 3 shows the automaton structure that maximizes the analyzed
complexity. Section 4 and 5 estimate the complexity for different cases, and Sec-
tion 6 reports some numerical calculations, w.r.t. the number of arcs. Section 7
presents our outcomes in a concise form and concludes the article.

2 Preliminaries

2.1 Automata

According to (Eilenberg, 1974; Hopcroft, Motwani, and Ullman, 2001), an au-
tomaton A is defined by the 5-tuple 〈Σ,Q, I, F, E〉 where

Σ is the finite alphabet
Q is the finite set of states
I ⊆ Q is the set of initial states
F ⊆ Q is the set of final states
E ⊆ Q×Σ ×Q is the finite set of arcs

An automaton is said to be normalized if and only if it has exactly one initial
state with no incoming arc and one final state with no outgoing arc (Berstel,
1989).

A state s is reachable (resp. coreachable) if there exists a path from some
state of I to s (resp. a path from s to some state of F); an automaton is said to
be trim if and only if all its states are reachable and coreachable (Perrin, 1990).

For any arc e∈E we denote by

p(e) p : E → Q the source state of e
n(e) n : E → Q the target state of e

Symbols are required only for printing out the paths. They are irrelevant in
the estimation of the complexity since the complexity for printing out a path
does not depend on the symbols themselves.

A path π of length l= |π| is a sequence of arcs e1e2 · · ·el such that n(ei) =
p(ei+1) for all i∈ [[1, l−1]]. A path is said to be successful if and only if p(e1)∈I
and n(el)∈F . The set of all successful paths of A is denoted by Π.

2.2 Conventions and assumptions

To simplify our notation, we will denote by:

a = |E| the number of arcs in A
s = |Q| the number of states in A
p = |Π| the number of successful paths in A

The following analysis is made for an automaton A under the assumption that:

– A is acyclic
– A is normalized
– A is trim
– a and s are given

No more assumptions are needed for our study. Our outcomes are indepen-
dent of possible additional properties of the automaton, such as determinism,
ε-arcs, multiplicities (or weights).

3 Worst-Case Structure

This section introduces the structure that maximizes the complexity of traversing
and printing all successful paths of a normalized acyclic automaton. We start
from the worst-case structure and show that any other structure decreases the
complexity.

q 1q 2q0 lq

0n n 1 n 2 n l−1

length l

arcsarcsarcsarcs

Fig. 1. Worst-Case structure of a normalized acyclic automaton.

Let A be an automaton that satisfies the assumptions in section 2.2 and has
the structure shown in Figure 1, with a arcs, s states, and p paths of length l.
Every state qi, except the last (final) one has ni outgoing arcs leading to the
next state qi+1.

Only a and l are fixed. According to the above structure, s = l+ 1. We will,
however, discuss alternative structures in the case of splitting a state (Figure 2)
where s > l + 1 (s will be temporarily variable).

Since the analyzed complexity depends on both p and l, and since l is fixed
at present, the maximum of the complexity is reached with the maximum of p.
Hence we will maximize p in this section.

Proposition 1. Let us consider a structure as shown in Figure 1.
Let n = ba

l
c, and let qi, for i ∈ [[0, l− 1]], such that

out(qi) =






n if i < l - (a mod l)

n+1 otherwise.

(1)

Then the maximum number of paths is:

Pmax =
l−1∏

i=0

out(qi) (2)

When a | l (l divides a) we denote

Pmax = puni = nl (3)

With respect to the notion of hammock used in (Caron and Ziadi, 2000) and
(Giammarresi, Ponty, and Wood, 2001), the structure defined by Proposition 1
is a uniform acyclic multi-hammock. In the following we call it a festoon.

Proof. Any of the following changes to this structure will reduce the number of
paths.

1. Moving arcs to other states: if one arc is moved from qi to qj, so that qi
will have n− 1, qj will have n+ 1, and all the other states will have n arcs,
then the number of paths will decrease to:

p1 = nl−2 (n − 1) (n+ 1) = nl−2 (n2 − 1) = nl − nl−2

= puni − nl−2 (4)

If k arcs are moved in that way, the number of paths decreases as well:

pk = nl−2 (n− k) (n + k) = nl−2 (n2 − k2)

= puni − k2 nl−2 (5)

If uniform distribution is impossible because a
l
6∈ IN then the maximum

number of paths is reached when the distribution of the arcs is given by the
function out(q) i.e., n or n+1 arcs per state. For a length l= l1+l2 with l1
states having n arcs each and l2 states having n+1 arcs each, the number of
path is:

Pmax = nl1 · (n+ 1)l2 (6)

If we move an arc from an n+1-arcs to an n-arcs section then obviously
the number of paths does not change. However, if we move an arc from an
n+1-arcs to another n+1-arcs section, then the number of path decreases
to:

p = nl1 · (n+ 1)l2−2 n(n+ 2) = nl1 · (n+ 1)l2−2 ((n + 1)2 − 1)

= nl1 · (n+ 1)l2 − nl1 (n+ 1)l2−2

= Pmax − nl1 (n+ 1)l2−2 (7)

and if we move an arc from an n-arcs to another n-arcs section, it decreases
(symmetrically) to:

p = Pmax − (n+ 1)l2 nl1−2 (8)

Any other move of k arcs between any two sections can be obtained by
combining the listed moves.

2. Splitting of states: If there are % prefixes ending and σ suffixes starting in
a state q then the number of paths traversing q is (Figure 2a):

ṗ = % · σ (9)

If we split q and its sets of prefixes and suffixes, so that there will be two
new states, q1 with %1 prefixes and σ1 suffixes, and q2 with %2 prefixes and

(a)

qρ prefixes σ suffixes

(b)

1 prefixesρ

q2
ρ prefixes 2σ suffixes

1

2

suffixesσq1

(c)

..

.
q2

qk

ρ prefixes

ρ

1

prefixes

ρk prefixes

1σ suffixes

2 σ suffixes

kσ suffixes

2

q1

Fig. 2. Splitting of one state and its prefixes and suffixes: (a) original state,
(b) splitting into two states, (c) splitting into k states.

σ2 suffixes, such that %1 +%2 = % and σ1 +σ2 = σ, then the number of paths
traversing either q1 or q2 is reduced to (Figure 2b):

ṗ1 + ṗ2 = %1 · σ1 + %2 · σ2

= (%− %2) · σ1 + (%− %1) · σ2

= % · (σ1 + σ2) − (%2 · σ1 + %1 · σ2)

= % · σ − (%2 · σ1 + %1 · σ2) (10)

%2 · σ1 + %1 · σ2 > 0 ⇒ ṗ1 + ṗ2 < ṗ (11)

Splitting a state q into k states q1 to qk has the same effect (Figure 2c):

k∑

i=1

ṗi = % · σ −
k∑

i=1




k∑

j=1,j 6=i

%j



 · σi (12)

with % =
k∑

i=1

%i and % =
k∑

i=1

%i

3. Changing the source or destination of arcs: The number of suffixes
that follow an arc is depending on the length of the suffixes (Figure 1). If
an arc leading from qi to qi+1 is redirected to a following destination qi+m
(m ≥ 2) then the number of suffixes following that arc decreases and hence
the total number of suffixes decreases too (Figure 3). Redirecting the arc to
a preceding destination state qi−b (b ≥ 0) would make the automaton cyclic
and is therefore not in the scope of this investigation. Changing the source
state of an arc will lead to similar results as changing its destination.

For an acyclic automaton with a given number of arcs, a, and a fixed length, l,
the maximal number of paths, Pmax, is reached with the festoon structure as in
Figure 1 and with an as uniform as possible distribution of a

l
arcs per state on

average (except for the final state). This is because any other structure can be
obtained from this one by combining the three modifications above, which all
reduce Pmax.

Since this structure maximizes p for any fixed l, it does it also for variable l.

Fig. 3. Changing the destination of an arc.

4 Worst-Case Complexity for Variable Length

Let us consider a festoon, with fixed a, and variable s and l. The number n of
arcs per state given by the function out(q) will depend on l. However, different
l will lead to different p.

The complexity of traversing and printing all paths of A, depends on the
number of arcs to be “handled” (i.e., traversed or printed). This number is given
by the following function:

f(n) = k p l (13)

with k ∈]1, 2] p = nl l =
a

n

The coefficient k ∈]1, 2] expresses that each of the l arcs on each of the p
paths is handled either once (only printed because already traversed on another
path) or twice (traversed and printed). Although k is depending on n and l, we
will consider it as a constant. It has no effect on the complexity of the current
task.

To find the number n̂ of arcs per state that leads to the worst-case complexity,
we compute the real x̂ which maximizes f(x) = k l xl. We construct the first
derivative of f(x) :

f(x) = k xl l = k xax
−1

ax−1 = k a xax
−1−1 = k a e(ax

−1−1) ln x

f(x) = k a eψ (14)

with ψ = (ax−1 − 1) lnx

f ′(x) = k a ψ′ eψ

f ′(x) = k a φ eψ (15)

with φ = ψ′ = ax−2(1 − lnx) − x−1

To find all extrema, we equate the first derivative to 0. Since for all k, a, ψ we
have : k a eψ > 0, we get :

f ′(x= x̂) = 0 ⇒ φ(x= x̂) = 0

0 = ax̂−2(1 − ln x̂) − x̂−1

1

a
=

1 − ln x̂

x̂
(16)

For an automaton with just one arc, x̂ is obviously 1 :

1

1
=

1 − ln 1

1

For large automata Equation 16 means:

lim
a→∞

1

a
= 0 ⇒ 0 =

1 − ln x̂

x̂

x̂ = e (17)

We further analyze f ′(x) to see for which values x= x́ the function f(x) is
growing:

f ′(x= x́) > 0 ⇒ φ(x= x́) > 0 (18)

0 < ax́−2(1 − ln x́) − x́−1

1

a
<

1 − ln x́

x́

lim
a→∞

1

a
= 0 ⇒ 0 <

1 − ln x́

x́

x́ < e (19)

and for which values x= x̀ the function f(x) is falling:

f ′(x= x̀) < 0 ⇒ φ(x= x̀) < 0 (20)

0 > ax̀−2(1 − ln x̀) − x̀−1

1

a
>

1 − ln x̀

x̀

lim
a→∞

1

a
= 0 ⇒ 0 >

1 − ln x̀

x̀

x̀ > e (21)

Equations 17, 19, and 21 show that f(x) has its only maximum at x = e,
is monotonically ascending for all x < e, and monotonically descending for all
x > e. The maximal number of arcs to be handled is:

f(x= x̂=e) = k a eae
−1−1 =

k

e
a e

√
e
a

(22)

Hence, the worst-case complexity of the above task, with fixed a and variable
s and l is:

O(f(x)) = O(e

√
e
a

) = O(1.4447 a) (23)

5 Worst Case for a Given Number of States

In the previous two sections we made no assumption on s and l. In the present
section s will be fixed, and l will be variable and ignored in the remainder of our
analysis. This corresponds with our initial assumptions (Section 2.2).

Let A now be an automaton with fixed a and s. In this case the results of
Section 3 and Section 4 may seem contradictory: s seems to impose l = s−1,
and s and a together seem to impose x = a

s−1 , the number of arcs per state. This
leads us to the question whether for a

l
6= e, the worst-case complexity is reached

with x = e or with uniform distribution x = a
s−1

.
In fact there is no contradiction, but we have to distinguish two different

cases:

1. If the number of states, s, is below the limit s < a
e

+ 1 then the worst case
is reached with a structure as in Figure 1 and l = s− 1 :

f(x) = k p l = k xl l = k
(a
l

)l
l

= k

(
a

s−1

)s−1

(s−1) (24)

This agrees with both previous results: the arcs are (approximately) uni-
formly distributed with x = a

l
> e. To further increase the complexity, x

would have to decrease towards e, which is not possible because it would
require more than a states. The complexity of this case is:

O
(
f(x)

∣∣∣s− 1 <
a

e

)
= O

((
a

s−1

)s−1
)

(25)

2. If the number of states, s, exceeds the limit s > a
e

+ 1 then the worst case
is reached with a length l = a

e
, using l + 1 states to form a structure as in

Figure 1, and the remaining states on state-splitting as in Figure 2 (Section 3,
Point 2). This splitting will decrease the complexity, so that Equation 23
constitutes an (unreached) upper bound in this case:

O
(
f(x)

∣∣∣s− 1 >
a

e

)
< O

(
e

√
e a

)
= O (1.4447 a) (26)

This agrees with both previous conclusions: the arcs are (approximately)
uniformly distributed with x = a

l
, and x equals to e, the value that maximizes

the complexity.

If the number of states s equals the limit s = a
e

+ 1 then both previous cases
hold and the equations of their complexities (25, 26) provide the same value.

6 Complexity Calculations for Some Cases

Table 1 shows results from a calculation of the function fa(x) = k p l (Equa-
tion 13), describing the task of traversing and printing a normalized acyclic
automaton, given the worst-case structure, fixed a, and variable s and l. The
coefficient k is set to 2. Each row gives (for fixed a) the average number of arcs

per state, x̂, the length, l̂, and the number of paths, p̂, where fa(x) reaches its
maximum:

k = 2 (27)

x̂ = arg max
x

fa(x) (28)

l̂ =
a

x̂
(29)

p̂ = x̂̂l (30)

fa(x̂) = k p̂ l̂ = max
x
fa(x) (31)

according to Equation 13. Note that x̂ ∈ IR because it is an average over all
states, and that in fact all l̂, p̂ ∈ IN rather than l̂, p̂ ∈ IR. Thus the table gives
an approximation in IR of values that are actually in IN .

For example, in an automaton with 16 arcs (a = 16), the maximum is reached

in fact with l = 7 (l̂ = 6.82), x′ = a
l

= 16
7 = 2.285714 (x̂= 2.3474, xi ∈ {2, 3}),

p=25·32 =288 (p̂=335.7), and fa(x
′)=4032 (fa(x̂)=4576). With growing a,

x̂ approaches e = 2.718282 . . .

a x̂ l̂ p̂ fa(x̂)

1 1.0000 1.00 1.000 2.000
2 1.3702 1.46 1.584 4.623
4 1.7535 2.28 3.601 16.43

8 2.0926 3.82 16.83 128.7
16 2.3474 6.82 335.7 4 576
32 2.5130 12.73 1.247·105 3.177·106

64 2.6096 24.52 1.646·1010 8.073·1011

128 2.6623 48.08 2.791·1020 2.684·1022

256 2.6898 95.17 7.913·1040 1.506·1043

512 2.7040 189.35 6.311·1081 2.390·1084

1024 2.7112 377.70 3.998·10163 3.020·10166

2048 program numeric overflow

Table 1. Calculation of the worst-case complexity with fixed a and
variable s and l.

7 Conclusion

Our investigation has shown (Equations 25, 26) that the complexity of traversing
and printing all paths of a normalized acyclic automaton with s states and a

arcs reaches its maximum with a structure as in Figure 1 and (approximately)
uniform distribution of arcs over the states (except for the final state that has
no outgoing arcs). For large a, and depending on s, the worst-case complexity
is:

O(f(x)) =






O
((

a
s−1

)s−1
)

for a > e(s − 1)

O (e

√
e a) = O

(
e

a

e

)
< O

(
es−1

)
for a ≤ e(s − 1)

Acknowledgments. We would like to thank Jean-Marc Champarnaud for
his advice.

References

Berstel, J. 1989. Finite Automata and Rational Languages. An Introduction, in
Formal Properties of Finite Automata and Applications. In J.-E. Pin, editor,
Lecture Notes in Computer Science, number 386. Verlag, 1989 edition, pages
2–14.

Caron, P. and D. Ziadi. 2000. Characterization of Glushkov automata. Theoret.
Comput. Sci., 233(1–2):75–90.

Eilenberg, S. 1974. Automata, Languages, and Machines, volume A. Academic
Press, San Diego, CA, USA.

Giammarresi, D., J.-L. Ponty, and D. Wood. 2001. Thompson digraphs: A
characterization, in WIA’99. Lecture Notes in Computer Science, 2214:91–
100.

Hopcroft, J. E, R. Motwani, and J. D Ullman. 2001. Introduction to Automata
Theory, Languages and Computation. Low Price Edition. Addison Wesley
Longman, Inc, Reading, Mass., USA, 2 edition.

Nicaud, C. 2000. Étude du comportement en moyenne des automates finis et
des languages rationnels. Thesis, University of Paris 7.

Perrin, D. 1990. Finite automata. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science: Volume B: Formal Models and Semantics.
Elsevier, Amsterdam, pages 1–57.

Yu, S., Q. Zhuang, and K. Salomaa. 1994. The state complexities of some basic
operations on regular languages. Theoret. Comput. Sci., 125(2):315–328.

