
WFSM Auto-Intersection and Join Algorithms

A. Kempe1, J.-M. Champarnaud2, F. Guingne1,3, F. Nicart1,3

1 Xerox Research Centre Europe – Grenoble Laboratory
6 chemin de Maupertuis – 38240 Meylan – France

Andre.Kempe@xrce.xerox.com – http://www.xrce.xerox.com

2 PSI Laboratory (Université de Rouen, CNRS)
76821 Mont-Saint-Aignan – France

Jean-Marc.Champarnaud@univ-rouen.fr – http://www.univ-rouen.fr/psi/

3 LIFAR Laboratory (Université de Rouen)
76821 Mont-Saint-Aignan – France

{Franck.Guingne,Florent.Nicart}@univ-rouen.fr
http://www.univ-rouen.fr/LIFAR/

Abstract. The join of two n-ary string relations is a main operation
regarding to applications. n-Ary rational string relations are realized by
weighted finite-state machines with n tapes. We provide an algorithm
that computes the join of two machines via a more simple operation,
the auto-intersection. The two operations generally do not preserve ra-
tionality. A delay-based algorithm is described for the case of a single
tape pair, as well as the class of auto-intersections that it handles. It is
generalized to multiple tape pairs and some enhancements are discussed.

1 Introduction

Multi-tape finite-state machines (FSMs) [16, 3, 7, 5, 6] are a natural generaliza-
tion of the familiar finite-state acceptors (one tape) and transducers (two tapes).
The n-ary relation defined by a (weighted) FSM is a (weighted) rational relation.
Finite relations are of particular interest since they can be viewed as relational
databases.4 Multi-tape machines have been used in the morphological analy-
sis of Semitic languages, to synchronize the vowels, consonants, and templatic
pattern into a surface form [7, 12]. The operation of join on multiple pairs of
tapes , that is similar to natural join of databases, is a crucial operation in many
practical applications. In this paper, we focus on its computation through more
basic operations such as the auto-intersection. The rationality of a join relation
is generally undecidable, and so is the rationality of an auto-intersection rela-
tion [9]. In the case of a single pair of tapes, a class Θ of triples 〈A, i, j〉 can be
defined so that the auto-intersection of the machine A w.r.t. tapes i and j can
be computed by a delay-based algorithm. This algorithm is generalized to the
case of multiple pairs of tapes, leading to a basic algorithm for computing the

4 The connection to databases and associated notation was pointed out by J. Eisner
in the joint work [9]. We thank him for allowing us to re-use this material.

2 A. Kempe et al.

join of two machines and to an improved version based on the notion of filtering
and on the operation of equi-join on a single pair of tapes.

Weighted n-ary relations and their machines are introduced in Section 2. Join
and auto-intersection operations are presented in Section 3. A basic algorithm
for computing the join of two machines and the embedded auto-intersection
algorithm are described in Section 4. We conclude by some enhancements.

2 Definitions

We recall some definitions about n-ary weighted relations and their machines, fol-
lowing the usual definitions for multi-tape automata [3, 1], with semiring weights
added just as for acceptors and transducers [13, 15]. For more details see [9].

Weighted n-ary relations: A weighted n-ary relation is a function from
(Σ∗)n to K, for a given finite alphabet Σ and a given weight semiring K =
〈K,⊕,⊗, 0̄, 1̄〉. Such a relation assigns a weight to any n-tuple of strings. A weight
of 0̄ means that the tuple is not in the relation.5 We are especially interested in
rational (or regular) n-ary relations, i.e. relations that can be encoded by n-tape
weighted finite-state machines, that we now define. By convention, the names of
objects containing n-tuples of strings include a superscript (n).

Multi-tape weighted finite-state machines: An n-tape weighted finite-
state machine (WFSM or n-WFSM) A(n) is defined by a six-tuple A(n) =
〈Σ, Q,K, E(n), λ, %〉, with Σ being a finite alphabet, Q a finite set of states,
K= 〈K,⊕,⊗, 0̄, 1̄〉 the semiring of weights, E(n)⊆ (Q × (Σ∗)n × K × Q) a finite
set of weighted n-tape transitions, λ : Q → K a function that assigns initial
weights to states, and % : Q → K a function that assigns final weights to states.
Any transition e(n)∈E(n) has the form e(n) =〈p, `(n), w, n〉. We refer to these four
components as the transition’s source state p(e(n))∈Q, its label `(e(n))∈(Σ∗)n,
its weight w(e(n))∈K, and its target state n(e(n))∈Q. We refer by E(q) to the
set of out-going transitions of a state q∈Q (with E(q)⊆E(n)).

A path γ(n) of length k ≥ 0 is a sequence of transitions e
(n)
1 e

(n)
2 · · · e

(n)
k such

that n(e
(n)
i)=p(e

(n)
i+1) for all i∈ [[1, k−1]]. The label of a path is the element-wise

concatenation of the labels of its transitions. The weight of a path γ(n) from q to
q′ is the product of the initial weight of q, the weights of the successive transitions
and the final weight of q′. The path is said to be successful, and to accept its
label, if w(γ(n)) 6= 0̄. We denote by ΓA(n) the set of all successful paths of A(n),
and by ΓA(n)(s(n)) the set of successful paths that accept the n-tuple of strings
s(n). The machine A(n) defines a weighted n-ary relation R(A(n)) : (Σ∗)n → K

that assigns to each n-tuple s(n) the total weight of all paths accepting it.

5 It is convenient to define the support of an arbitrary weighted relation R(n), as being
the set of tuples to which the relation gives non-0̄ weight.

Auto-Intersection and Join of WFSMs 3

3 Operations

We now describe some central operations on n-ary weighted relations and their
n-WFSMs [11]. The auto-intersection operation is introduced, with the aim of
simplifying the computation of the join operation. Our notation is inspired by
relational databases. Mathematical details can be found in [9].

Simple Operations: Any n-ary weighted rational relation can be constructed
by combining the basic rational operations of union, concatenation and closure.
Rational operations can be implemented by simple constructions on the cor-
responding nondeterministic n-tape WFSMs [17]. These n-tape constructions
and their semiring-weighted versions are exactly the same as for acceptors and
transducers, since they are indifferent to the n-tuple transition labels.

The projection operator π〈j1,...jm〉, with j1, . . . jm ∈ [[1, n]], maps an n-ary
relation to an m-ary one by retaining in each tuple components specified by the
indices j1, . . . jm and placing them in the specified order. Indices may occur in
any order, possibly with repeats. Thus the tapes can be permuted or duplicated:
π〈2,1〉 inverts a 2-ary relation. The complementary projection operator π{j1,...jm}

removes the tapes j1, . . . jm and preserves the order of other tapes.

Join operation: Our join operator differs from database join in that database
columns are named, whereas our tapes are numbered. Tapes being explicitly
selected by number, join is neither associative nor commutative.

For any distinct i1, . . . ir ∈ [[1, n]] and any distinct j1, . . . jr ∈ [[1, m]], the join
operator 1{i1=j1,...ir=jr} combines an n-ary and an m-ary relation into an (n +
m − r)-ary relation defined as follows:6

(

R
(n)
1 1{i1=j1,...ir=jr} R

(m)
2

)

(〈u1, . . . un, s1, . . . sm−r〉) =def R
(n)
1 (u(n)) ⊗R

(m)
2 (v(m)) (1)

v(m) being the unique tuple s. t. π{j1,...jr}(v
(m)) = s(m−r) and (∀k ∈ [[1, r]]) vjk

= uik
.

The intersection of two n-ary relations is the n-ary relation defined by the
join operator 1{1=1,2=2,...n=n}. A join on a single pair (resp. multiple pairs) of
tapes is said to be a single-pair (resp. multi-pair) one. Examples of single-pair
join are the join 1{1=1} (the intersection of two acceptors) and the join 1{2=1}

that can be used to express transducer composition.
A lot of practical applications could not be performed without the multi-

tape join operation, for example: multi-tape transduction (mapping n-tuples to
m-tuples of strings), probabilistic normalization of n-WFSMs conditioned on
multiple tapes,7 or searching for cognates [8].

Unfortunately, rational relations are not closed under arbitrary joins [9]. For
example, transducers are not closed under intersection [16]. The join operation

6 For example the tuples 〈abc, def, ε〉 and 〈def, ghi, ε, jkl〉 combine in the join
1{2=1,3=3} and yield the tuple 〈abc, def, ε, ghi, jkl〉, with a weight equal to the prod-
uct of their weights.

7 This can be obtained by a straightforward generalization of J. Eisner’s algorithm for
probabilistic normalization of transducers conditioned on one tape [2].

4 A. Kempe et al.

is, however, so useful that it is helpful to have a partial algorithm: hence our
motivation for studying auto-intersection.

Auto-Intersection: For any distinct i1, j1, . . . ir, jr ∈ [[1, n]], we define an
auto-intersection operator σ{i1=j1,i2=j2,...ir=jr}. It maps a relation R(n) to a

subset of that relation, preserving tuples s(n) whose elements are equal in pairs
as specified, but removing other tuples from the support of the relation:8

(

σ{i1=j1,...ir=jr}(R
(n))

)

(〈s1, . . . sn〉) =def

{

R(n)(〈s1, . . . sn〉) if (∀k∈ [[1, r]])sik
=sjk

0̄ otherwise
(2)

Auto-intersecting a relation is different from joining it with its own projec-
tions. For example, σ{1=2}(R

(2)) is supported by tuples of the form 〈w, w〉 ∈

R(2). By contrast, R(2)
1{1=1}

(

π〈2〉(R
(2))

)

is supported by tuples 〈w, x〉 ∈ R(2)

such that w can also appear on tape 2 of R(2) (but not necessarily paired with
a copy of w on tape 1).9

Actually, join and auto-intersection are related by the following equalities:

R
(n)
1 1{i1=j1,...ir=jr} R

(m)
2 = π{n+j1,...n+jr}

(

σ{i1=n+j1,...ir=n+jr}(R
(n)
1 ×R

(m)
2)

)

(3)

σ{i1=j1,...ir=jr}(R
(n)) = R(n)

1{i1=1,j1=2,...ir=2r−1,jr=2r} (π〈1,1〉(Σ
∗))r (4)

Thus, for any class of difficult join instances whose results are non-rational
or have undecidable properties [9], there is a corresponding class of difficult
auto-intersection instances, and vice-versa. Conversely, a partial solution to one
problem would yield a partial solution to the other.

An auto-intersection on a single pair (resp. multiple pairs) of tapes is said to
be a single-pair (resp. multi-pair) one. It may be wise to compute σ{i1=j1,...ir=jr}

all at once rather than one tape pair at a time, since a sequence of single-
pair auto-intersections such as σ{ir=jr}(· · · (σ{i1=j1}) · · ·) could fail due to non-
rational intermediate results, even if the final result is rational.10

4 Join via auto-intersection: a first construction

Following (3), a multi-pair join can be computed via a multi-pair auto-intersection.
A first version of such a join algorithm is presented in this section. The embed-
ded multi-pair auto-intersection algorithm is a generalization of the single-pair
one, that has been proved to work for a specific class of auto-intersections [10].

8 The requirement that the 2r indices be distinct mirrors the similar requirement on
join and is needed in (4). But it can be evaded by duplicating tapes.

9 Applying σ{1=2} to {〈a, b〉, 〈b, a〉} yields the empty relation, whereas joining it with
its own projection (either 1{1=1} π〈2〉 or 1{2=1} π〈1〉) does not change the relation.

10 Applying σ{2=3,4=5} to {〈aibj , ci, cj , x, y〉 | i, j ∈ N} yields the empty relation, while
applying σ{2=3} yields the non-rational relation {〈aibi, ci, ci, x, y〉 | i ∈ N}.

Auto-Intersection and Join of WFSMs 5

4.1 Multi-pair join: a basic algorithm

The Algorithm Join1 attempts to construct the join of two WFSMs, A
(n)
1

and A
(m)
2 , on multiple pairs of tapes specified by a set of constraints T =

{t1 =(i1 =j1), . . . tr =(ir =jr)}. We write 1T instead of 1{i1=j1,...ir=jr}.

Join1(A
(n)
1 , A

(m)
2 , T) → A(n+m−r) : [T = {t=(i=j)} ; |T | = r ; A(n+m−r) = A

(n)
1 1T A

(m)
2]

1 A(n+m) ← A
(n)
1 ×A

(m)
2

2 if |T | 6= 0
3 then

4 A(n+m) ← AutoIntersection(A(n+m), T)

5 if A(n+m) = ⊥ [error code]
6 then return ⊥

7 A(n+m−r) ← π{n+jh | th=(ih=jh)∈T}(A
(n+m))

8 return A(n+m−r)

We compile first the cross-product A(n+m) of A
(n)
1 and A

(m)
2 . If T is empty,

we simply return the crossproduct A(n+m) (Line 2). Otherwise we compile the
auto-intersection of A(n+m) for all specified pairs of tapes (Line 4). The auto-
intersection may fail and return an error code, in which case the join algorithm
must return an error code as well (Lines 5, 6).

4.2 A class of rational single-pair auto-intersections

We now introduce a single-pair auto-intersection algorithm and the class of
bounded delay auto-intersections that this algorithm can handle. For a detailed
exposure see [10].

Although due to Post’s Correspondence Problem there exists no fully general

algorithm of auto-intersection [9], A(n) =σ{i=j}(A
(n)
1) can be compiled for a class

of triples 〈A
(n)
1 , i, j〉 whose definition is based on the notion of delay [4, 14], i.e.,

the difference of length of two strings of an n-tuple: δ〈i,j〉(s
(n)) = |si|− |sj |

(with i, j∈ [[1, n]]). The delay of a path γ = γ1γ2 · · · γr, or of any of its factors γh,
results from its respective labels on tapes i and j: δ〈i,j〉(γ) = |`i(γ)|−|`j(γ)|. We
call the delay bounded if its absolute value does not exceed some limit. A path
has bounded delay if all its prefixes have bounded delay,11 and an n-WFSM has
bounded delay if all its successful paths have bounded delay.

We construct A(n) without creating invalid paths with `i(γ) 6=`j(γ), which is
equivalent to creating them with w(γ)= 0̄. Thus, all paths of A(n) have a delay

equal to 0 : Let Γ 0 be the set of accepting paths of A
(n)
1 with a 0-delay. Then it

11 Any finite path has bounded delay (since its label is of finite length). An infinite
path (traversing cycles) may have bounded or unbounded delay. For example, the
delay of a path labeled with (〈ab, ε〉〈ε, xz〉)h is bounded by 2 for any h, whereas that
of a path labeled with 〈ab, ε〉h〈ε, xz〉h is unbounded for h −→ ∞.

6 A. Kempe et al.

holds: ΓA(n) ⊆Γ 0⊆Γ
A

(n)
1

. The sum of the delays of the factors of a path is equal

to its delay, and it holds: ∀γ =γ1γ2 · · · γr ∈Γ 0, δ〈i,j〉(γ) =
∑r

h=1 δ〈i,j〉(γh) = 0.

Let us traverse A
(n)
1 in-depth,12 both left-to-right and right-to-left, and mem-

orize the global maxima δ̂LR
〈i,j〉(A

(n)
1) and δ̂RL

〈i,j〉(A
(n)
1), and global minima δ̌LR

〈i,j〉(A
(n)
1)

and δ̌RL
〈i,j〉(A

(n)
1) of the delay on any path. Let us then observe the delay along a

path γ∈Γ 0 : It would begin and end with δ〈i,j〉=0, and have a global maximum

δ̂〈i,j〉(γ) and a global minimum δ̌〈i,j〉(γ).

Proposition 1. Let Θ be the class of all the triples 〈A
(n)
1 , i, j〉 such that A

(n)
1

does not contain a path traversing both a cycle with positive delay and a cycle
with negative delay (w.r.t. tapes i and j). Then for all paths γ∈ΓA(n) of A(n) =

σ{i=j}(A
(n)
1), the delay is bounded by

δmax

〈i,j〉 = max(|δ̂LR
〈i,j〉(A

(n)
1)| , |δ̂RL

〈i,j〉(A
(n)
1)| , |δ̌LR

〈i,j〉(A
(n)
1)| , |δ̌RL

〈i,j〉(A
(n)
1)|) (5)

Proof. If a path γ ∈ Γ 0 has only cycles with positive delay, traversing a cy-
cle raises the delays in γ’s suffix. These cycles have, however, no impact on
the delays in the in-depth traversals, where cycles are not traversed. Therefore

(δ̌LR
〈i,j〉(A

(n)
1)≤ δ̌〈i,j〉(γ)≤0) and (δ̂RL

〈i,j〉(A
(n)
1)≥ δ̂〈i,j〉(γ)≥0) which means

∀γ∈Γ 0, max(|δ̂〈i,j〉(γ)|, |δ̌〈i,j〉(γ)|) ≤ max(|δ̌LR
〈i,j〉(A

(n)
1)|, |δ̂RL

〈i,j〉(A
(n)
1)|) (6)

This still holds if we also admit cycles with 0-delay on γ, since traversing them
has no impact on the delays of γ’s suffix. If all cycles of γ had negative or 0-delay
instead, we would obtain

∀γ∈Γ 0, max(|δ̂〈i,j〉(γ)|, |δ̌〈i,j〉(γ)|) ≤ max(|δ̌RL
〈i,j〉(A

(n)
1)|, |δ̂LR

〈i,j〉(A
(n)
1)|) (7)

Since ΓA(n) ⊆Γ 0, (6) (7) and Proposition 1 hold for all paths γ∈ΓA(n) .

Joining A
(n)
1 beforehand with its own (neutrally weighted) projections yields

a superset of A(n): support((A
(n)
1 1{i=1} π〈j〉(A

(n)
1)) 1{j=1} π〈i〉(A

(n)
1)) ⊇

support(A(n)). The triple 〈A
(n)
1 , i, j〉 is placed into Θ, as soon as this opera-

tion removes from A
(n)
1 all cycles in conflict with Θ. This method is referred

as filtering and performed prior to any auto-intersection (it is the function Fil-

terTapePairs of the Algorithm AutoIntersection in Section 4.4). Based on

Proposition 1, an algorithm can be designed to compute σ{i=j}(A
(n)
1) as far as

〈A
(n)
1 , i, j〉 ∈ Θ. This algorithm is now described in a more general case.

12 We optionally trim the automaton to restrict it to accepting paths. Then, to find
(for example) δ̂LR

〈i,j〉, we exhaustively explore all acyclic paths from the start state,
and record the maximum delay on any path prefix. This takes exponential time in
general, which is unavoidable since the longest-acyclic-path problem is NP-complete.

Auto-Intersection and Join of WFSMs 7

4.3 Multi-pair auto-intersection: a basic construction

Our construction bears resemblance to known transducer synchronization pro-
cedures [4, 14]. However the algorithm of Frougny and Sakarovitch [4] is based
on a K-covering of the transducer and it works only for non-empty input labels
whereas our single-pair auto-intersection algorithm supports unrestricted label-
ing. Our algorithm is based on a general reachability-driven construction, as it is
the case for the synchronization algorithm of Mohri [14]. But the labeling of the
transitions is quite different since our algorithm performs a copy of the original
labeling, and we also construct only such paths whose delay does not exceed
some limit that we are able to determine.

We now address the case of a multi-pair auto-intersection σ{i1=j1,...ir=jr} such

that for all h∈ [[1, r]], 〈A
(n)
1 , ih, jh〉 ∈ Θ. As an example, we consider the WFSM

A
(4)
1 in Figure 1a and the auto-intersection σ{1=2,3=4}(A

(4)
1), with 〈A

(4)
1 , 1, 2〉 ∈ Θ

and 〈A
(4)
1 , 3, 4〉 ∈ Θ; the associated delay limits are δmax

〈1,2〉 = 1 and δmax

〈3,4〉 = 2.

The support (a:a:dc:cd ∪ a:ε:c:ε)∗ (ba:ab:c:ε)∗ ε:a:ε:cc of A
(4)
1 is equal to the set

{ 〈ai+j(ba)h, ai(ab)ha, ([dc]i cj)ch, (cd)ic2〉 | i, j, h ∈ N }.13

2

ba:ab:c:ε /w3

a:ε ε:c: /w1

1

0

/ρ1

/w2ε:ε:ε:ε

ε:a:ε:cc /w4

/w0a:a:dc:cd

(a) (b)
ξ= (ε,ε)

ν=2

ab(,ε)
(ba,c)ξ=

ξ= (ε,ε)
(a,c)

ν=1

ξ= (ε,ε)
(a,c)

ν=0

ξ=

c

ε:a:ε:cc /w4

/w2ε:ε:ε:ε

/w0a:a:dc:cd

ξ= (ε,ε)
(ε,ε)

ν=0

(ε,)

(aa,cc)

(a,cc)

ν=2

(ε,)dc
cd(ε,)ξ=

(ε,ε)

(ε,ε)

ξ=
ν=1
(a,cc)
(ε,ε)

ξ= (a,ccc)
(ε,ε)

ξ= (ε,ε)
(ε,ε)

ν=2

ξ= (ε,ε)
(ε,ε)

ν=1

ξ=
1

4

ba:ab:c:ε /w3

1

/w2ε:ε:ε:ε

a:ε ε:c: /w1

/w

4

0

9

2

10

/w0a:a:dc:cd

ε:a:ε:cc

5
/w3

6 7 8

ba:ab:c:ε /w3

11 /ρ

ε

3

a:ε ε:c: /w1

ε:a:ε:cc /w4

ba:ab:c:

Fig. 1. (a) A WFSM A
(4)
1 and (b) its auto-intersection A(4) =σ{1=2,3=4}(A

(4)
1) (dashed

parts are not constructed).

We construct simultaneously the two auto-intersections σ{1=2} and σ{3=4}.

We copy states and transitions one by one from A
(4)
1 (Figure 1a) to A(4) (Fig-

ure 1b), starting with the initial state q1 =0. We assign to each state q of A(4)

two variables: ν[q]=q1 is the corresponding state q1 of A
(4)
1 , and ξ[q]=(s(r), u(r))

expresses the leftover string tuple s(r) (resp. u(r)) from the tapes 〈i1, . . . ir〉 (resp.
〈j1, . . . jr〉), yet unmatched on the tapes 〈j1, . . . jr〉 (resp. 〈i1, . . . ir〉). In partic-
ular, we have: ν[0]=0 and ξ[0]=(〈ε, ε〉, 〈ε, ε〉).

13 A square-bracketted string cannot be split by shuffle: in ([ab]i [cd]j), any number
of cd can occur between two occurrences of ab, but not inside one ab.

8 A. Kempe et al.

AutoIntersectMultiPair(A
(n)
1 , i(r), j(r), (δmax

〈i,j〉)
(r)) → A(n) :

1 A(n) ← 〈Σ← Σ1, Q← 6©, K← K1, E(n)← 6©, λ, ρ〉
2 Stack ← 6©
3 for ∀q1 ∈ Q1 : λ(q1) 6= 0̄ do

4 getPushState(q1, (ε
(r), ε(r)))

5 while Stack 6= 6© do

6 q ← pop(Stack)
7 q1 ← ν[q]

8 (s(r), u(r)) ← ξ[q]
9 for ∀e1 ∈ E(q1) do

10 (s′
(r)

, u′(r)
) ← getLeftoverStrings(s(r) ·πi(r) (`(e1)), u(r) ·πj(r) (`(e1)))

11 if ∀h∈ [[1, r]] :
`

s′h =ε ∨ u′
h =ε

´

∧
`

˛

˛|s′h| − |u
′
h|

˛

˛ ≤ (δmax

〈ih,jh〉)h

´

12 then q′ ← getPushState(n(e1), (s
′(r)

, u′(r)
))

13 E ← E ∪ { 〈q, `(e1), w(e1), q
′〉 }

14 return A(n)

getLeftoverStrings(ṡ(r), u̇(r)) → (s′
(r)

, u′(r)
) :

15 x(r) ← longestCommonPrefix(ṡ(r), u̇(r))

16 return ((x(r))−1 · ṡ(r), (x(r))−1 · u̇(r))

getPushState(q1, (s
′(r)

, u′(r)
)) → q′ :

17 if ∃q ∈ Q : ν[q] = q1 ∧ ξ[q] = (s′
(r)

, u′(r)
)

18 then q′ ← q

19 else q′ ← createNewState()
20 ν[q′] ← q1

21 ξ[q′] ← (s′
(r)

, u′(r)
)

22 if s′
(r)

= ε(r) ∧ u′(r)
= ε(r)

23 then λ(q′) ← λ(q1)
24 ρ(q′) ← ρ(q1)
25 else λ(q′) ← 0̄
26 ρ(q′) ← 0̄
27 Q ← Q ∪ {q′}
28 push(Stack, q′)
29 return q′

Then, we attempt to copy the three outgoing transitions of q1 = 0 with
their original labels and weights, as well as their respective target states. The
ξ[n(e)] of the target state of a transition e results from the ξ[p(e)] of its source
state, concatenated with the relevant components of its label `(e). The longest
common prefix14 of the two string tuples in ξ[n(e)] is removed. A target q that
has the same ν[q] and ξ[q] as an existing state q′, it is not created and q′ is used
instead. For example, for the cyclic transition e on q=2 (Figure 1b), the leftover
tuples of the source, ξ[p(e)] = (〈a, c〉, 〈ε, ε〉), are concatenated with the relevant

14 The longest common prefix of two string tuples is compiled element-wise.

Auto-Intersection and Join of WFSMs 9

projections of the label, π〈1,3〉(`(e)) = 〈a, dc〉 and π〈2,4〉(`(e)) = 〈a, cd〉, yielding
ξ′ = (〈aa, cdc〉, 〈a, cd〉); since lcp(ξ′) = 〈a, cd〉, the leftover tuples of the target
are finally ξ[n(e)]=(〈a, c〉, 〈ε, ε〉), which implies that p(e)=n(e).

State q = 3 (resp. q = 1) and its incoming transition are not created be-
cause δmax

〈1,2〉 is exceeded (resp. dc and cd are incompatible leftover strings). State

q = 9 is non-final, although ν[9] = 2 is final, because its leftover tuples are not
(〈ε, ε〉, 〈ε, ε〉). As expected, the support a:ε:c:ε (a:a:dc:cd)∗ ba:ab:c:ε ε:a:ε:cc of
the auto-intersection is equal to the set { 〈ai+1ba, ai+1ba, (cd)ic2, (cd)ic2〉 | i ∈ N }.

Algorithm: The Algorithm AutoIntersectMultiPair computes the auto-

intersection σ{i1=j1,...ir=jr} in the case where ∀h ∈ [[1, r]], 〈A
(n)
1 , ih, jh〉 ∈ Θ. The

tape indices are specified in two tuples, i(r) = 〈i1, . . . ir〉 and j(r) = 〈j1, . . . jr〉,
that are also used for projection, πi(r) =π〈i1,...ir〉. The delay limits, related to the

two index tuples, are specified in one tuple, (δmax

〈i,j〉)
(r) =〈(δmax

〈i1,j1〉
)1, . . . (δ

max

〈ir ,jr〉
)r〉.

The function GetPushState checks whether a target state already exists or
not; a new state is created if necessary and pushed onto the stack.

The construction of A(n) =σ{i1=j1,...ir=jr}(A
(n)
1) is guaranteed to terminate

because each auto-intersection σ{ih=jh} terminates. Only such states are created
for σ{i1=j1,...ir=jr}, that would also have been created for each σ{ih=jh} sepa-

rately. Therefore, the number |Q| of states in A(n) cannot exceed that of each

separate auto-intersection. Finally we get |Q| < 2 |Q1|
|Σ1|

min
h

(δmax

〈ih,jh〉
)
−1

|Σ1|−1 .

4.4 Multi-pair auto-intersection: iterative construction

We now address the case of a multi-pair auto-intersection σ{i1=j1,...ir=jr} such

that there may exist h ∈ [[1, r]] with 〈A
(n)
1 , ih, jh〉 6∈ Θ. As an example we consider

the WFSM A
(4)
1 of Figure 2a and the auto-intersection σ{1=2,3=4}(A

(4)
1). The

support (a:a:dc:cd ∪ a:ε:c:ε)∗ (ba:ab:ε:c)∗ ε:a:ε:c of A
(4)
1 is equal to the set

{ 〈ai+j(ba)h, ai(ab)ha, ([dc]i cj), (cd)ichc〉 | i, j, h ∈ N }.

Since 〈A
(4)
1 , 1, 2〉 ∈ Θ with δmax

〈1,2〉 = 1 and 〈A
(4)
1 , 3, 4〉 6∈ Θ, σ{1=2}(A

(4)
1) is first

compiled (Figure 2b); its support (a:a:dc:cd)∗a:ε:c:ε (a:a:dc:cd)∗(ba:ab:ε:c)∗ε:a:ε:c
is the set { 〈ai+j+1(ba)h, ai+j+1(ba)h, (dc)i(cd)jc, (cd)i(cd)jch+1〉 | i, j, h ∈ N }.

Since 〈σ{1=2}(A
(4)
1), 3, 4〉 ∈ Θ with δmax

〈3,4〉 = 2, we now can compile the second

auto-intersection (Figure 2c), whose support a:ε:c:ε (a:a:dc:cd)∗ ε:a:ε:c is equal
to the set { 〈ai+1, ai+1, (cd)ic, (cd)ic〉 | i ∈ N }.

Algorithm: The Algorithm AutoIntersection attempts to construct iter-

atively the auto-intersection σT (A
(n)
1) on tape pairs specified by the set T . The

function FilterTapePairs implements the filtering of σT (A
(n)
1) and the func-

tion SelectTapePairs selects tapes satisfying 〈A
(n)
1 , i, j〉 ∈ Θ. The function

CompileDelayLimit computes the limit δmax

〈i,j〉.

As long as T is not empty (Line 2), the algorithm filters all tape pairs (see
Section 4.2) then selects all constraints t = (i = j) on which the auto-intersection

10 A. Kempe et al.

(a)

/w1

ε:a:ε:c /w4

ba:ab:ε:c /w3

:c:

1

/ρ12

0

/w0a:a:dc:cd

/w2ε:ε:ε:ε

a:ε ε

(b)

a:ε ε:c: /w1

ε:a:ε:c /w4

/w2ε:ε:ε:ε

a:a:dc:cd

1

0

3

2

/ρ1

ba:ab:ε:c /w3

/w0a:a:dc:cd

/w0

(c)

:c /w4

/w2ε:ε:ε:ε

a:ε ε:c: /w1

ε

1

0

3

2

/ρ1

/w0a:a:dc:cd

ε:a:

Fig. 2. Iterative compilation of auto-intersection: (a) a WFSM A
(4)
1 , (b) its auto-

intersection σ{1=2}(A
(4)
1), and (c) a second auto-intersection σ{3=4}(σ{1=2}(A

(4)
1)).

is constructible (Line 4), and compiles a limit of the delay δmax

〈i,j〉 for each of

those pairs (Line 8–9). Finally, it constructs an auto-intersection simultaneously
on all selected pairs (Line 10–13). In the next iteration, it tries the same for
the set of remaining pairs (Line 14, 2). The test of constructibility may now
succeed on a pair of tapes on which it previously failed, because the cycles that
made it fail may have disappeared in between. The algorithm terminates either
successfully if all tape pairs can been processed (T = 6©) or not if some pairs
remain (T 6= 6©∧ T ′= 6©). In the latter case, an error code is returned (Line 5–6).

AutoIntersection(A
(n)
1 , T) → A(n) : [T = {t=(i=j)} ; A(n) = σT (A

(n)
1)]

1 A(n) ← A
(n)
1

2 while T 6= 6© do

3 A(n) ← filterTapePairs(A(n), T)

4 T ′ ← selectTapePairs(A(n), T)
5 if T ′ = 6©
6 then return ⊥ [error code]

7 else i(r=0) ← j(r=0) ← (δmax

〈i,j〉)
(r=0) ← 〈 〉

8 for ∀t=(i=j) ∈ T ′
do

9 δmax

〈i,j〉 ← compileDelayLimit(A(n), i, j)

10 i(r+1) ← append(i(r), i)

11 j(r+1) ← append(j(r), j)

12 (δmax

〈i,j〉)
(r+1) ← append((δmax

〈i,j〉)
(r), δmax

〈i,j〉)

13 A(n) ← AutoIntersectMultiPair(A(n), i(r), j(r), (δmax

〈i,j〉)
(r))

14 T ← T \ T ′

15 return A(n)

Auto-Intersection and Join of WFSMs 11

5 Conclusion

We conclude by briefly describing an improved version of the Algorithm Join1. It

is based on the operation of single-pair equi-join.15 A single-pair join A
(n)
1 1{i=j}

A
(m)
2 can be compiled in one step, rather than first building the cross-product,

A
(n)
1 ×A

(m)
2 , and then deleting most of its paths by the auto-intersection σ{i=n+j}.

Our single-pair join algorithm is very similar to the classical transducer compo-
sition; it simulates the behaviour of an ε-filter (cf [15]) for aligning ε-transitions
in the two transducers.

The improved join algorithm selects arbitrarily one pair of tapes and performs
on it a single-pair equi-join (that always yields a rational result, at least for
weights over a commutative semiring) followed by an auto-intersection for the
remaining pairs (that may fail). So far we found no evidence that would allow
us to decide whether the choice of the first pair of tapes, that is used in the
equi-join, matters for the success of the whole algorithm.

Acknowledgments

We wish to thank Jason Eisner for allowing us to use a bulk of relevant nota-
tion that he elaborated (cf. Footnote 4), Mark-Jan Nederhof for pointing out
the relationship between auto-intersection and Post’s Correspondence Problem
(personal communication), and the anonymous reviewers of our paper for their
valuable advice.

References

1. Samuel Eilenberg. Automata, Languages, and Machines, volume A. Academic
Press, San Diego, 1974.

2. Jason Eisner. Parameter estimation for probabilistic finite-state transducers. In
Proc. of the 40th Annual Meeting of the Association for Computational Linguistics,
Philadelphia, 2002.

3. Calvin C. Elgot and Jorge E. Mezei. On relations defined by generalized finite
automata. IBM Journal of Research and Development, 9(1):47–68, 1965.

4. Christiane Frougny and Jacques Sakarovitch. Synchronized rational relations of
finite and infinite words. Theoretical Computer Science, 108(1):45–82, 1993.

5. Tero Harju and Juhani Karhumäki. The equivalence problem of multitape finite
automata. Theoretical Computer Science, 78(2):347–355, 1991.

6. Ronald M. Kaplan and Martin Kay. Regular models of phonological rule systems.
Computational Linguistics, 20(3):331–378, 1994.

7. Martin Kay. Nonconcatenative finite-state morphology. In Proc. 3rd Int. Conf.
EACL, pages 2–10, Copenhagen, Denmark, 1987.

8. André Kempe. NLP applications based on weighted multi-tape automata. In Proc.
11th Conf. TALN, pages 253–258, Fes, Morocco, 2004.

15 According to database notation an equi-join does not discard any tape.

12 A. Kempe et al.

9. André Kempe, Jean-Marc Champarnaud, and Jason Eisner. A note on join and
auto-intersection of n-ary rational relations. In B. Watson and L. Cleophas, editors,
Proc. Eindhoven FASTAR Days, number 04–40 in TU/e CS TR, pages 64–78,
Eindhoven, Netherlands, 2004.

10. André Kempe, Jean-Marc Champarnaud, Jason Eisner, Franck Guingne, and Flo-
rent Nicart. A class of rational n-WFSM auto-intersections. In O. H. Ibarra and
Z. Dang, editors, Proc. 10th Int. Conf. CIAA, Sophia Antipolis, France, 2005.
(to appear).

11. André Kempe, Franck Guingne, and Florent Nicart. Algorithms for weighted multi-
tape automata. Research report 2004/031, Xerox Research Centre Europe, Meylan,
France, 2004.

12. George Anton Kiraz. Multitiered nonlinear morphology using multitape finite
automata: a case study on Syriac and Arabic. Computational Lingistics, 26(1):77–
105, 2000.

13. Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Number 5
in EATCS Monographs on Theoretical Computer Science. Springer Verlag, Berlin,
Germany, 1986.

14. Mehryar Mohri. Edit-distance of weighted automata. In Proc. 7th Int. Conf.
CIAA (2002), volume 2608 of Lecture Notes in Computer Science, pages 1–23,
Tours, France, 2003. Springer Verlag, Berlin, Germany.

15. Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. A rational design
for a weighted finite-state transducer library. Lecture Notes in Computer Science,
1436:144–158, 1998.

16. Michael O. Rabin and Dana Scott. Finite automata and their decision problems.
IBM Journal of Research and Development, 3(2):114–125, 1959.

17. Arnold L. Rosenberg. On n-tape finite state acceptors. In IEEE Symposium on
Foundations of Computer Science (FOCS), pages 76–81, 1964.

