
Extraction of ε-Cycles

from Finite-State Transducers

André Kempe

Xerox Research Centre Europe – Grenoble Laboratory
6 chemin de Maupertuis – 38240 Meylan – France

andre.kempe@xrce.xerox.com – http://www.xrce.xerox.com/research/mltt

Abstract. Much attention has been brought to determinization and
ε-removal in previous work. This article describes an algorithm for ex-
tracting all ε-cycles, which are a special type of non-determinism, from
an arbitrary finite-state transducer (FST). The algorithm factorizes (de-
composes) the FST, T , into two FSTs, T1 and T2, such that T1 contains
no ε-cycles and T2 contains all ε-cycles of T . Since ε-cycles are an obsta-
cle for some algorithms such as the factorization of ambiguous FSTs, the
proposed approach allows us to by-pass this problem. ε-Cycles can be
extracted before and re-inserted (by composition) after such algorithms.

1 Introduction

Much attention has been brought to the problem of non-determinism. There
has been work on both determinization in general and ε-removal [1, 6, 5, among
many others].

This article describes an algorithm for extracting all ε-cycles, which represent
a special type of non-determinism consisting of consecutive arcs with the empty
string ε as input label, from an arbitrary finite-state transducer (FST). The
algorithm factorizes (decomposes) the FST, T , into two FSTs, T1 and T2, such
that T1 contains no ε-cycles and T2 contains all ε-cycles of T . Jointly in a cascade,
T1 and T2 describe the same relation and perform the same mapping as T .

Motivation: Some algorithms, such as the factorization of ambiguous FSTs
[8, 7, 4], can only be performed on real-time FSTs, where every arc has exactly
one symbol on the input side. Arcs with ε as input label are an obstacle for
such algorithms. In many cases, an FST can be made real-time by removing its
ε-arcs and concatenating their output labels with the output of adjacent non-
ε-arcs. This classical method, however, is not applicable to FSTs with ε-cycles.
To by-pass the problem, the ε-cycles of an FST, T , can be extracted by the
approach below, where T is factorized into T1 and T2. Then, the ε-cycle-free and
(at most) finitely ambiguous T1 can be made real-time and further factorized
into a sequential T1,1 and an ambiguous flower transducer T1,2 that contains
no failing paths for any output string of T1,1 [4]. Finally, the ε-cycles can be
re-inserted by composing T1,2 with T2.

2 André Kempe

1.1 Conventions

Input and output side: Although FSTs are inherently bidirectional, they
are often intended to be used in a given direction. The proposed algorithm is
performed relative to the direction of application. In this article, the two sides
(or tapes or levels) of an FST are referred to as input side and output side.

Examples of finite-state networks: Every example is shown in one or
more figures. The first figure usually shows the original network. Possible follow-
ing figures show modified forms of the same example. For example, Example 1
is shown in Figure 1 to Figure 3.

Finite-state graphs: Every FST has one initial state, labeled with num-
ber 0, and one or more final states marked by double circles. The initial state
can also be final. All other state numbers and all arc numbers have no meaning
for the FST but are just used to reference a state or an arc. An arc with n labels
designates a set of n arcs with one label each that all have the same source and
destination. In a symbol pair occurring as an arc label, the first symbol is the
input and the second the output symbol. For example, in the symbol pair a:b,
a is the input and b the output symbol. Simple, i.e., unpaired labels represent
identity pairs. For example, a means a:a.

Composition: In T1♦T2♦T3 = T3 ◦T2 ◦T1, the FST T1 is applied first
and T3 last [2]. We will use the ♦ -operator because we prefer left-to-right
notation (and application) in general, and find it clearer in examples such as
(a :b)♦(b :c)♦(c :d) = (a :d), compared to (c :d) ◦ (b :c) ◦ (a :b) = (a :d).

Special symbols: The “?” denotes any symbol (except ε or ε̂) when it is
used in a regular expression. Both ε and ε̂ mean the empty string and have
the same effect when the FST is applied to an input sequence, but ε̂ should be
preserved in minimization and determinization. Greek letters are used to denote
auxiliary symbols. Those have a “special” meaning and are distinct from the
ordinary input and output symbols.

1.2 Preliminaries

An FST can be described by the six-tuple T = 〈Σ, ∆, Q, i, F, E〉 with an input
alphabet Σ, an output alphabet ∆, a state set Q, an initial state i∈Q, a set of
final states F ⊆Q, and a set of transitions E.

Given a transition e∈E, we denote its input label by i(e), its output label by
o(e), its source state by p(e), and its destination state by n(e). The transition
can be described by the quadruple e=〈p(e), i(e), o(e), n(e)〉. Given a state q∈Q,
we denote the set of its outgoing transitions by E(q) and the set of its incoming
transitions by ER(q). A path π=e1 · · · ek is an element of E∗ with consecutive
transitions. To express that a transition e is on a path π, we write e∈ π. To refer
to a particular path in a figure, we give the arc numbers in ceiling brackets; e.g.,
π =d100, 101, 102, 103 e is a path consisting of the four named arcs. We denote
by P (q, q′) the set of all paths πi(q, q

′) from q to q′, by C(q) the set of all cycles
on q (i.e., all paths from q to q), and by Cε(q) the set of all ε-cycles on q , i.e.,

ε-Cycle Extraction 3

those cycles consisting only of arcs with ε as input label:

P (q, q′) =
⋃

i

{πi(q, q
′)} (1)

C(q) = P (q, q) (2)

Cε(q) = {π ∈ C(q) | ∀e∈ π, i(e) = ε} (3)

We are particularly interested in simple ε-cycles Ĉε(q) on a state q which do
not traverse any state more than once:

Ĉε(q) ⊆ Cε(q) (4)

Ĉε(q) = {π ∈ Cε(q) | ∀e, e′ ∈ π, e 6=e′ ⇒ n(e) 6=n(e′)} (5)

We extend the notion of input and output labels to paths and sets of paths,
cycles, or ε-cycles, and denote their sequences of input and output labels by
i(π(q, q′)), o(π(q, q′)), i(Cε(q)), o(Cε(q)), etc. Note that i(), o(), and their ar-
guments can be single elements or sets.

2 Basic Idea

Any arbitrary FST, T , containing ε-cycles can be factorized (decomposed) into
two FSTs, T1 and T2, such that T1 contains no ε-cycles and is therefore at most
finitely ambiguous, and T2 contains all ε-cycles of T . The set of ε-cycles Cε(qi)
of every state qi in T is represented by a single arc mapping ε to an auxiliary
symbol ξi in T1. Instead of (perhaps infinitely) traversing Cε(qi), ξi is emitted.
All ξi are then mapped to the corresponding original Cε(qi) in T2 :

Cε(qi) −→ (ε : ξi) ♦ (ξi : o(Cε(qi))) (6)

0 1 3 5

2 4

ε:rε:r
ε:s ε:s

100

101

102

103

104

105

106

a:x b:y c:z

abc −→ x (rs)∗ y (rs)∗ z

Fig. 1. Transducer T with ε-cycles (Example 1)

Figure 1 shows a simple example of an FST with two ε-cycles, Cε(1) ={d101,
102 e} and Cε(3) ={d104, 105 e}. The FST maps the input string abc to the
output string xyz, and inserts an arbitrary number of substrings rs inside.

Figure 2 shows the same example after the extraction of ε-cycles (factoriza-
tion). T1 maps the input string abc to the intermediate string xξ1yξ3z (Fig. 2a).
T2 maps the auxiliary symbols, ξ1 and ξ3, to ε-cycles, and every other symbol
of the intermediate string to itself (Fig. 2b). Although the auxiliary symbols are
single symbols, they describe (sets of) ε-cycles. Since actually ξ1 and ξ3 describe

4 André Kempe

(a) 3 4 50 1 2
ε:ξ3ε:ξ1

103

c:z
100

a:x b:y
101 102 104

(b)
1 20

ε:r

ε:s

ξ :ε1

ξ :ε3

ε^

103

100

101

102 104

x y z

abc −→ x ξ1 y ξ3 z −→ x (rs)∗ y (rs)∗ z

Fig. 2. Factorization of T into (a) an ε-cycle-free T1 that emits auxiliary sym-
bols, and (b) a T2 that maps auxiliary symbols to ε-cycles (Example 1)

equal ε-cycles in this example, it would be sufficient to use two occurrences of the
same auxiliary symbol, e.g. ξ1, instead. In such cases, the number of auxiliary
symbols can be reduced a posteriori [3]. The ε̂ denotes the empty string, like ε,
but it should be preserved in minimization and determinization. Otherwise T2

would become larger (Example 1 Fig. 2b, and Example 2 Fig. 9b).
T1 can be converted into a real-time FST, without ε-arcs, by removing the

ε-arcs and concatenating their output symbols with the output of adjacent non-
ε-arcs.

(a)
3 4 50 1 2

ε:(rs)* ε:(rs)*
103

c:z
100

a:x b:y
101 102 104

(b)
0 1 2 3

100 101 102

a:x(rs)* b:y(rs)* c:z

Fig. 3. Alternative representation of ε-cycles by complex labels (a) with ε-arcs
or (b) as a real-time transducer without ε-arcs (Example 1)

An alternative to factorizing T into T1 and T2 would be representing T by a
single FST, T̂ , that is similar to T1 but with more complex output labels that
directly describe sets of ε-cycles Cε(qi). Every Cε(qi) in T would be reduced to

a single ε-arc in T̂ (Fig. 3a). T̂ can be further converted into a real-time FST,
without ε-arcs (Fig. 3b). This representation of ε-cycles is similarly to what
can be seen, e.g., in [7, p. 221, Fig. 6], and is equivalent to our representation
by two FSTs. In both cases one needs an algorithm (possibly very similar) for
identifying the Cε(q), extracting them from T , and constructing one or the other
representation.

3 Algorithm

The above Example 1 contains only ε-cycles that could be removed by physically
removing their arcs (Fig. 1). However, ε-cycles can be more complex. They can
overlap with each other, with non-ε-cycles, or with other (non-cyclic) paths. This
means, ε-cycles must be removed without physically removing their arcs.

ε-Cycle Extraction 5

0

2

1

ε:v
ε:t

ε:s

ε:r

104

102

101

100

103

a:x
ε −→ (rst|vt)∗ r

a an −→ (rst|vt)∗ x (st (vt)∗ r)∗
(

s (tv|trs)∗ t x (st (vt)∗ r)∗
)

n

Fig. 4. Transducer T with ε-cycles (Example 2)

Figure 4 shows a more complex example.1 None of the ε-arcs 101 , 103 , and
104 can be physically removed because they are not only part of ε-cycles but
among others also of the complete paths d101 e and d100, 103, 104, 100 e that
accept the input strings ε and aa respectively.

3.1 Preparation

To extract all ε-cycles of an arbitrary FST, T , the algorithm proceeds as follows.
First, T is concatenated on both ends with boundary symbols, # (Fig. 5). This
operation causes that the properties of initiality and finality, so far only described
by states, are now also described by arcs and can therefore be ignored by the
algorithm (cf. all pseudo code).

3: ξ3 ≡ Ĉε(3)= {d106, 102, 105 e, d106, 103 e}

1

3

ε:v
ε:t

ε:s

ε:r
0 2 4

a:x

#
100

101

102

103

106

104

105

2: ξ2 ≡ Ĉε(2)= {d105, 106, 102 e}

1: ξ1 ≡ Ĉε(1)= {d102, 105, 106 e, d103, 106 e}

Fig. 5. Transducer T ′ with boundaries, auxiliary symbols, and ε-cycle information
(Example 2)

Each state qi in T is then assigned both information about its Ĉε(qi) and

an auxiliary symbol ξi that (at this stage) is considered as equivalent to Ĉε(qi).
The resulting FST is called T ′ (Fig. 5). For example, state 1 is assigned the

set Ĉε(1) ={d102, 105, 106 e, d103, 106 e} and the auxiliary symbol ξ1 which
means that two ε-cycles consisting of the named arcs start at state 1 and are
equivalent to ξ1. These two ε-cycles generate the output substrings (rst)∗ and
(vt)∗ respectively.

1 In all figures of Example 2, thin arcs are used for ε-transitions and thick arcs for
non-ε-transitions.

6 André Kempe

There are different ways to compute the Ĉε(q) of all q. For example, starting
from a state q, we traverse every ε-path that does not encounter any state,
except q, more than once. If the path ends at its start state q, it is an ε-cycle,
and is inserted into Ĉε(q). All arcs e along a traversed path are put onto a stack
(pseudo code, line 3: push(Stack, e)) so that at any time we can describe the
path by the content of the stack (line 5: π=path(Stack)) :

T −→ T′ :

1 for ∀q ∈ Q

2 do Stack := {}

3 Ĉε(q) := {}
4 follow epsilon arcs(q)

follow epsilon arcs(p) :

1 for ∀e ∈ E(p)
2 do if i(e) = ε

3 then push(Stack, e)

4 if n(e) = q

5 then Ĉε(q) := Ĉε(q) ∪ {π | π=path(Stack)}
6 else if ∀e′ ∈ path(Stack), n(e) 6=n(e′)
7 then follow epsilon arcs(n(e))
8 pop(Stack)

Although the Ĉε(q) do not contain all ε-cycles of a state q, the missing ε-
cycles, that traverse a state q′ more than once, do not escape our attention. They
are in the Ĉε(q

′) of q′ which is sufficient for our final purpose. The reason for

building Ĉε(q) instead of Cε(q) is that Ĉε(q) is easier to construct, to represent
(by an arc sequence), and to “rotate” (Sec 3.2).

3.2 Construction of T1

Two steps are required to build T1 from T ′ (Fig. 5) : First, at every state qi with

a non-empty set Ĉε(qi), an arc mapping ε to ξi must be inserted. Second, all
ε-cycles must be removed without physically removing their arcs.

4

2’

3’

3 ε:ξ3

1
ε:ξ2

ε:s
:vε

21’0
#

100

ε:ξ1

ε:t

ε:r

a:x

#
200

101

102

103

106
202

201

105

104

Fig. 6. Transducer T ′

1 with redirected ε-arcs (Example 2)

ε-Cycle Extraction 7

T′ −→ T′

1
:

1 for ∀qi ∈ Q

2 do if Ĉε(qi) 6= {}
3 then Q := Q ∪ {q′i}
4 E := E ∪ {(q′i, ε, ξi, qi)}
5 for ∀e ∈ ER(qi)

6 do if Ĉε(qi) 6⊆ rotateLR
e (Ĉε(p(e)))

7 then n(e) := q′i

We insert for every state qi with non-empty Ĉε(qi), an auxiliary state q′i and
an auxiliary arc e′i leading from q′i to qi (Fig. 6, dashed states and arcs). The arc
e′i is labeled with ε:ξi, i.e., it emits the auxiliary symbol ξi when it is traversed.
For example, the auxiliary state 1′ in created for state 1, and the auxiliary arc
200 labeled with ε:ξ1 is inserted from state 1′ to 1.

Then, some incoming arcs of every state qi are redirected to the corresponding
auxiliary state q′i so that ξi is emitted before qi is reached. An incoming arc e

requires no redirection if the set Ĉε(qi) of its destination state n(e) = qi is a

“repetition”, relative to e, of part of the Ĉε(p(e)) of its source state p(e). This

is the case if every ε-cycle in Ĉε(qi) can be obtained by “rotating” an ε-cycle in

Ĉε(p(e)), left to right, over e (pseudo code, line 6). In this case a redirection of
e would not be wrong but it is redundant and can lead to a larger T1 and T2.

For example, the arc 106 requires no redirection from state 1 to 1′ because
every ε-cycle in Ĉε(1) can be obtained by rotating an ε-cycle in Ĉε(3) over the

arc 106; namely the ε-cycle d102, 105, 106 e in Ĉε(1) by rotating d106, 102, 105 e

in Ĉε(3) over the arc 106, and the ε-cycle d103, 106 e in Ĉε(1) by rotating d106,

103 e in Ĉε(3) over the same arc 106 (Fig. 5, 6). In other terms, since d(106,
102, 105)∗, 106 e=d106, (102, 105, 106)∗ e and d(106, 103)∗, 106 e=d106, (103,
106)∗ e, which in both cases means dξ3, 106 e=d106, ξ1 e, the insertion of ξ1 after
the arc 106, which would result from a redirection of this arc, is unnecessary; ξ1

would not express anything that has not been described yet by ξ3.

The arc 103 must be redirected from state 3 to 3′ because the ε-cycle d106,

102, 105 e in Ĉε(3) cannot be obtained by rotating any of the ε-cycles in Ĉε(1)
over the arc 103. The arc 101 must be redirected from state 2 to 2′ because it is
not an ε-arc which means that no ε-cycles can be rotated over it.

4

2’

3’

3 ε:ξ3

1
ε:ξ2

ζ0:r

ζ1:s

ζ :t2

ζ3:v

21’0
#

100

ε:ξ1

a:x

#
200

101

102

103

106
202

201

105

104

Fig. 7. Transducer T ′′

1 with redirected and overwritten ε-arcs (Example 2)

8 André Kempe

To prepare the removal of ε-cycles, the ε on the input side of every arc of
every Ĉε(qi) is temporarily overwritten by an auxiliary symbol ζj (Fig. 6, 7).
This auxiliary symbol is different for every concerned arc, e.g., it is ζ0 for the
arc 102 and ζ1 for the arc 105 . We call the result T ′′

1
.

T′

1
−→ T′′

1
:

1 j := 0

2 for ∀q ∈ Q

3 do for ∀e ∈ π ∈ Ĉε(q)
4 do if i(e) = eps

5 then i(e) := ζj

6 j := j + 1

Every ε-cycle in T ′′

1
is then described by a sequence of ζj. For example, the

ε-cycle d102, 105, 106 e in Ĉε(1) is described by the sequence dζ0, ζ1, ζ2 e that
consists of the new input symbols of this cycle (Fig. 5, 6, 7). Then, a constraint

R1 is formulated to disallow all ε-cycles in all sets Ĉε(qi), by disallowing the
corresponding ζj -sequences:

R1 = ¬
(

?∗
(⋃

q

i(Ĉε(q))
)

?∗
)

(7)

In Example 2, this constraint is (Fig. 7) :

R1 = ¬
(

?∗
(

(ζ0 ζ1 ζ2) ∪ (ζ3 ζ2) ∪ (ζ1 ζ2 ζ0) ∪ (ζ2 ζ0 ζ1) ∪ (ζ2 ζ3)
)

?∗
)

(8)

example

When R1 is composed on the input side of T ′′

1
, all ε-cycles disappear; even those

that are in Cε(qi), but not in Ĉε(qi), of a state qi because they appear in Ĉε(qk)
of at least one other state qk:

T ′′′

1
= R1 ♦ T ′′

1
(9)

However, instances of the ζj-arcs remain in T ′′′

1
if they are also part of another

path that is not an ε-cycle. Finally, every remaining ζj , which stands for ε, and
every boundary symbol, #, which has to be removed, is replaced with ε, and T ′′′

1

is minimized (Fig. 9a). We call the result T1. Note that an initially introduced
auxiliary symbol ξi does no appear in T1 if none of the incoming arcs of the state
qi have been redirected.

3.3 Construction of T2

T2 is built from T ′ (as was the case with T1) (Fig. 5). T2 must map any auxiliary

symbol ξi to the corresponding set of ε-cycles Cε(qi) rather than Ĉε(qi). For

every state qi with non-empty Ĉε(qi), two auxiliary arcs, both labeled with the
auxiliary symbol ξi, are created (Fig. 8); one arc leading from the initial state
i to qi, the other from qi to the only final state f (pseudo code, lines 3 and 4).
The resulting FST will be referred to as T ′

2
.

ε-Cycle Extraction 9

1

3

ε:v
ε:t

ε:s

ε:r
0 2 4

ξ2

ξ2

ξ1

ξ1

ξ3 ξ3

#

a:x

100

106

103

102

101

105

104

300
301

302

304
305

306

Fig. 8. Transducer T ′

2 (Example 2)

T′ −→ T′

2
:

1 for ∀qi ∈ Q

2 do if Ĉε(qi) 6= {}
3 then E := E ∪ {〈i, ξi, ξi, qi〉}
4 E := E ∪ {〈qi, ξi, ξi, f〉}

All paths in T ′

2
that contain only full (and no partial) ε-cycles of a state qi

must be kept and all others removed. For example, the set of paths d301, (102,
105, 106)∗, 304 e containing all ε-cycles of Cε(1) must be kept and d301, (102,
105, 106)∗, 102, 305 e must be removed (Fig. 8). The paths to be kept, consist
of twice the same auxiliary symbol, ξi ξi, on the input side. To allow only them,
T ′

2
is composed with a constraint:

T ′′

2
=

(
⋃

i

{ξi ξi}

)
♦ T ′

2
(10)

This removes all undesired paths. In Example 2, the composition is (Fig. 8) :

T ′′

2
=

(
(ξ1 ξ1) ∪ (ξ2 ξ2) ∪ (ξ3 ξ3)

)
♦ T ′

2
(11)

example

The resulting T ′′

2
maps any sequence of two identical auxiliary symbols ξiξi to

itself, and inserts the corresponding set of ε-cycles Cε(qi) in between. The second
occurrence of every ξi is actually unwanted. The following composition removes
this second occurrence on the input and output side, and the first occurrence of
ξi on the output side only:

T ′′′

2
= (? ε̂ :?) ♦ T ′′

2
♦ (?:ε ?∗ ?: ε̂) (12)

The resulting T ′′′

2
maps any single auxiliary symbol ξi to the corresponding set

Cε(qi). The ε̂ denotes the (ordinary) empty string, like ε. It is, however, preserved
in minimization and determinization which prevents T2 from becoming larger.
If the size is of no concern, ε can be used instead.

T2 must accept any sequence of output symbols of T1, i.e., any sequence in
∆∗

T1
. It must map every auxiliary symbol ξi to the corresponding set of ε-cycles

Cε(qi), and every other symbol to itself. T2 is built by:

10 André Kempe

T2 =

(
∆T1

♦

(
T ′′′

2
∪ ¬

⋃

i

ξi

))∗

(13)

This operation has the side effect that all initially introduced auxiliary symbols
ξi that later disappeared from T1, are now also removed from T2. Finally, T2 is
minimized (Fig. 9b).

(a)

10 3

2 47

ε:ξ2

56

ε:ξ1

ε:r

ε:sε:t

ε:ξ3

100 101

102

105

107

106

104

103

a:x

a:x

(b)

0 ξ :ε2

ξ :ε3

ε^

ε^

ε^

1
2

3

4
5

6

7
8

9

ξ :ε1

ε:r

ε:t

ε:s

ε:t

ε:t

ε:v

ε:r

ε:s

ε:r

ε:s

ε:v

ε:v

100

r s t x

101
102

103

104

105

106

107

108

109

110

111

112

113

115

114 116

117

118

ε −→ ξ1 r −→ (rst|vt)∗ r

a an −→ ξ1 x ξ2

(
s ξ3 t x ξ2

)
n

−→ (rst|vt)∗ x (st (vt)∗ r)∗
(

s (tv|trs)∗ t x (st (vt)∗ r)∗
)

n

Fig. 9. Factorization of T with ε-cycles into (a) T1 that emits auxiliary symbols,
and (b) T2 that maps auxiliary symbols to ε-cycles (Example 2)

3.4 Proof

For the following reason, the algorithm always leads to the described result.
In T1: If an ε-cycle in Cε(qi) contains a state qk more that once, which

means that this cycle has an “inner” ε-cycle on qk, than Cε(qi) also contains an
ε-cycle where no qk is encountered more that once, which can be obtained by
not traversing the inner cycle on qk. This also holds if there are several inner
cycles. In general:

Cε(qi) 6= {} ⇒ Ĉε(qi) 6= {} (14)

This means, every qi with Cε(qi) 6= {} will be assigned an auxiliary symbol ξi,

although this action is triggered by Ĉε(qi) 6={}.

All inner ε-cycles, that are not in Ĉε(qi), are in Ĉε(qk), of some other state
qk. Consequently, they will be removed as well, i.e., all ε-cycles of T1 will be
removed.

Example 2 (Fig. 5) : Since state 2 has a non-empty Cε(2) ={d105, (106,

103)∗, 106, 102 e}, it also has a non-empty Ĉε(2)={d105, 106, 102 e} and will
therefore be assigned ξ2. The inner cycle d(106, 103)∗ e in Cε(2) will be removed

from T1, despite not being in Ĉε(2), because it is in Ĉε(1) and Ĉε(3).

ε-Cycle Extraction 11

In T2: The Cε(qi) of every state qi that has been assigned an auxiliary symbol
ξi are preserved whereas every other path is removed. This means, the ξi are
mapped to Cε(qi) rather than to Ĉε(qi) that originally caused their introduction.

The initial limitation to Ĉε(qi) is not reflected in the final result, T1 and T2.

4 Final Remarks

Although T1 (Fig. 9a) cannot be converted into a single real-time FST, it can
be split into the union of two FSTs, one containing the transitions {100, 102},
the other the transitions {100, 101, 103, 104, 105, 106, 107}. The second of these
FSTs can be made real-time.

Jointly in a cascade, T1 and T2 describe the same relation and perform the
same mapping as the original FST T (Fig. 9). When T1 and T2 are composed
with each other, T is obtained. The size increase of T2, compared to T , is not
necessarily a concern. T2 could be an intermediate result that is further pro-
cessed.

(a)

10 3

2 47

56

ε:r

ε:sε:t

ε:(rst|vw)* ε:(st(tv)*r)*

ε:(tv|trs)*

100 101

105

107

106

104

103

a:x

a:x
102

(b)

10

2
ε:(rst|vw)*r

a:(rst|vw)*x(st(tv)*r)*
100

a:s(tv|trs)*tx(st(tv)*r)*

102101

Fig. 10. Alternative representation of ε-cycles by complex labels (a) with ε-arcs or
(b) more compact with less ε-arcs (Example 2)

As previously show for Example 1, instead of factorizing T into T1 and T2, one
can represent T by a single FST, T̂ , that is similar to T1 but with output labels
directly describing sets of ε-cycles Cε(q). Every Cε(q) in T would be reduced to

a single arc in T̂ (Fig. 10). Both representations are equivalent and require, as
mentioned, an algorithm (possibly very similar) to construct them.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. 1986. Compilers - Principles, Techniques
and Tools. Addison-Wesley, Reading, MA, USA.

2. G. Birkhoff and T. C. Bartee. 1970. Modern Applied Algebra. McGraw-Hill, New
York, USA.

3. A. Kempe. 2000. Reduction of intermediate alphabets in finite-state transducer
cascades. In Proceedings of the 7th Conference on Automatic Natural Language
Processing (TALN), pages 207–215, Lausanne, Switzerland. ATALA.

12 André Kempe

4. A. Kempe. 2001. Factorization of ambiguous finite-state transducers. In S. Yu, A.
Paun, editors, Proceedings of the 5th International Conference on Implementation
and Application of Automata (CIAA 2000), The University of Western Ontario,
London, Ontario, Canada, July 24-25, 2000. Volume 2088 of Lecture Notes in
Computer Science , pages 170–181, Springer-Verlag.

5. M. Mohri. 2001. Generic ε-removal algorithm for weighted automata. In S. Yu, A.
Paun, editors, Proceedings of the 5th International Conference on Implementation
and Application of Automata (CIAA 2000), The University of Western Ontario,
London, Ontario, Canada, July 24-25, 2000. Volume 2088 of Lecture Notes in
Computer Science , pages 230–242, Springer-Verlag.

6. G. van Noord. 1998. Treatment of ε-moves in subset construction. In Proceed-
ings of the International Workshop on Finite-State Methods in Natural Language
Processing (FSMNLP), pages 1–12, Ankara, Turkey, June 29 - July 1. Bilkent Uni-
versity.

7. J. Sakarovitch. 1998. A construction on finite automata that has remained hidden.
Theoretical Computer Science, 204:205–231.

8. M. P. Schützenberger. 1976. Sur les relations rationnelles entre monöıdes libres.
Theoretical Computer Science, 3:243–259.

